

IoT Security and Privacy Building IoT devices with Raspberry Pi

YIER JIN

UNIVERSITY OF FLORIDA

EMAIL: <u>YIER.JIN@ECE.UFL.EDU</u>

SLIDES ARE ADAPTED FROM PROF. XINWEN FU @ UCF/UMASS

Learning Outcomes

Upon completion of this unit:

- Students will be able to make the use of Raspberry Pi, which will be used to build secure IoT device prototypes.
- Students will be able to construct basic circuits interacting with Raspberry Pi
- Students will be able to practice programming Raspberry Pi

Prerequisites and Module Time

Prerequisites

- Students should have taken classes on operating system and computer architecture.
- Students should know basic concepts of networking.
- Module time
 - Two-hour lecture
 - One-hour homework

Outline

Overview

Setup and configurations

10 Use of Raspberry Pi

Breadboard

GPIO

Sample use: Control LED

Sample use: Read PIR motion sensor

What is a Raspberry Pi?

University of Cambridge's Computer Laboratory

- Decline in skill level
- Designed for education
- A credit card sized PC
- Plugs into a TV or monitor
- Inexpensive <\$40 each
- Capability:
 - Programming
 - Electronic Projects
 - Office
 - Play HD Videos

Different Versions

Raspberry Pi 4

- Raspberry Pi 3 model B+
- Raspberry Pi 3 model B
- Raspberry Pi 2 model B
- Raspberry Pi model B+
- Raspberry Pi model A+
- Raspberry Pi Zero W
- Raspberry Pi Zero

Components

Essential components

- Raspberry Pi 3/4 with WiFi (or USB WiFi dongle for old models)
- Prepared Operating System SD Card
- USB keyboard
- USB mouse
- Display (HDMI, DVI, or composite input (TV cable), DSI touch screen)
- Power Supply

Highly suggested extras

- Internet connectivity LAN cable
- Case
- Breadboard
- Sensors
- Wires

Programming Languages

Any language which will compile for the ARM chip used in the Pi

Python

С

C++

Java

Scratch

Ruby

Outline

Overview

Setup and configurations

10 Use of Raspberry Pi

Breadboard

GPIO

Sample use: Control LED

Sample use: Read PIR motion sensor

Setup

Configurations

Booting Up for the First Time

- Choose OS (Raspbian recommended)
- Configure to use the Whole SD Card
- Change Timezone
- Boot into Desktop
- Run the configuration later
 - sudo raspi-config
 - Or use the GUI
- Network setup
 - Using a Wired Network
 - USB WiFi Adapter/Onboard WiFi

UF FLORIDA

Software Packages to Use I/O (Input/Output)

GPIO setup: install Python library Rpi.GPIO

sudo apt-get update

sudo apt-get install python-dev

sudo apt-get install python-rpi.gpio

I2C: A standard for chips talking to each other

- Multiple devices to Raspberry Pi through I2C bus
- Unique address for each device through jumper settings
- To use with Pi: Enable kernel support from rasp-config

Install the i2c-tools utility

sudo apt-get update

- sudo apt-get install python-smbus
- sudo apt-get install i2c-tools
- Test I2C devices: sudo i2cdetect -y 1

Sample Starter Kits

CanaKit Raspberry Pi 4 4GB Starter Kit with WiFi \$99.99

CanaKit Raspberry Pi 2 Ultimate Starter Kit with WiFi \$84.99

Raspberry Pi 2 Model B Starter Pack - Includes a Raspberry Pi 2 \$99.95

Outline

Overview

Setup and configurations

10 Use of Raspberry Pi

Breadboard

GPIO

Sample use: Control LED

Sample use: Read PIR motion sensor

Example Use

Office: LibreOffice

- Programming: Python, Scratch
- Game console
- Web server: Apache
- Tor router
- HTPC A home theater PC (HTPC) or media center computer
- Bird house
- Super computer
- Clock
- PiBot

Outline

Overview

Setup and configurations

10 Use of Raspberry Pi

Breadboard

GPIO

Sample use: Control LED

Sample use: Read PIR motion sensor

How A Breadboard Works

A grid of holes on a plastic board

Internal metal strips underlining the holes as jumper wires

Connecting specific rows or columns of holes.

Electric component leads and wires are inserted into the holes

Wires connect electric component leads

Building circuits with a breadboard: stick components and wires into the holes.

Outline

Overview

- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO (General-purpose input/output)
- Sample use: Control LED
- Sample use: Read PIR motion sensor

GPIO: MODELS A+, B+ AND RASPBERRY PI 2, 3, 4

Physical interface between the Pi and the outside world.

Can be viewed as switches

- That you can turn on or off (input)
- Or that the Pi can turn on or off (output).

GPIO Pins

40 pins on the board

- 26 GPIO pins
- Others are power or ground pins

Use of GPIO Pins

Program the pins to interact in various ways

Input to a pin from a sensor, another computer or device

For example, from a motion sensor

Output from a pin can do

- Turn on an LED
- Send a signal or data to another device.
- A networked Raspberry Pi
 - Remote control of attached physical devices
 - Receiving data from those devices

Pin Numbering

GPIO NUMBERING

Seen by the onboard computer

PHYSICAL NUMBERING

Counting across and down from pin 1 at the top left

Raspberry Pi 3 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I ² C)	$\bigcirc \bigcirc$	DC Power 5v	04
05	GPIO03 (SCL1, I ² C)	$\bigcirc \bigcirc$	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	$\bigcirc \bigcirc$	Ground	14
15	GPIO22 (GPIO_GEN3)	$\bigcirc \bigcirc$	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	$\bigcirc \bigcirc$	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	$\bigcirc \bigcirc$	Ground	20
21	GPIO09 (SPI_MISO)	$\bigcirc \bigcirc$	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	\odot	(SPI_CE0_N) GPIO08	24
25	Ground	$\bigcirc \bigcirc$	(SPI_CE1_N) GPIO07	26
27	ID_SD (I ² C ID EEPROM)	$\bigcirc \bigcirc$	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	$\bigcirc \bigcirc$	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	$\bigcirc \bigcirc$	Ground	34
35	GPIO19	$\bigcirc \bigcirc$	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40
/. 2 /02/2016 www.element14.com/RaspberryPi				

Warning

Unknowingly plugging wires and power sources may damage Pi when connecting power hungry things to a Pi

- LEDs are fine
- Motors are not

For caution and ease of use, use a breakout board like Pibrella Until you become familiar with Pi

Labeled pins (otherwise needs a diagram)

Maybe protection circuit

Output

GPIO pin outputs are 3v3 or 0v

- Can be called on or off, HIGH or LOW
- Each pin can turn on or off

Example use

 Raspberry Pi as the switch and the battery in the left diagram.

INPUT

GPIO pins are the simplest I/O on microcontrollers

"pull up" and "pull down" circuits give an input pin a reference

- In a case that the switch is off
- To differentiate noise from signal

The input mode of a GPIO pin has high impedance

Outline

Overview

- Setup and configurations
- 10 Use of Raspberry Pi
- Breadboard
- GPIO

Sample use: Control LED

Sample use: Read PIR motion sensor

Program with Python to Control LED

Open Terminal application

- Click the terminal icon on the taskbar or
- Main Menu -> Accessories -> Terminal.

Open editor *idle3*: sudo idle3 & and press

Create a Python file within idle3

- File -> new window.
- File -> Save As reaction.py
- Type the code
- Save the file: File -> Save.

Run the code: **Run** -> **Run Module** or by pressing F5

Run Python File from the Command Line

Run Python 2

python reaction.py

Run python3

Python3 reaction.py

Python [7]

Hello world

print("Hello world")

Indentation

- Indicate a block of code
- 4 blank spaces in tradition

Variables

- Assignment like c with no need of type definition
- Type can be changed

Comments

- Single line #
- Multi-line: triple quotes """ comments """

Python [7] (Cont'd)

Lists (like array)

• Mylist=[7, 8, 9]

Iteration

for

Range

if statement

N= [1, 2, 3] for n in N: print(n)

for i in range(5):
 print(i)

```
name = "Joe"
if len(name) > 3:
    print("Nice name,")
    print(name)
else:
    print("That's a short name,")
    print(name)
```


Code

- 1. import RPi.GPIO as GPIO # Import GPIO library
- 2. import time # Import time library
- 3. GPIO.setmode(GPIO.BCM) #Use BCM pin numbering
- 4. GPIO.setwarnings(False) #Ignore GPIO warning messages
- 5. led = 4 # Assign 4 to variable led
- 6. GPIO.setup(led, GPIO.OUT) # Set pin 4 for outputting information
- 7. GPIO.output(led, 1) # Turns the GPIO pin 'on' (i.e., outputs 3.3v)
- 8. time.sleep(5) # Pause the prorgam for 5 second
- 9. GPIO.output(led, 0) # Turns the GPIO pin 'off' (i.e., outputs 0v)

10. # Clean up all the used ports in the program. Resets any ports you have used in this program back to input mode

11. GPIO.cleanup()

Outline

Overview

Setup and configurations

10 Use of Raspberry Pi

Sample starter kit

GPIO

Sample use: Control LED

Sample use: Read PIR motion sensor

Motion Sensor

UF FLORIDA

PIR Sensor Principle

The PIR sensor is made of IR sensitive material

The lens over the sensor can change

Breadth, range, sensing pattern

An idle sensor detect the same amount of IR from the environment.

Motion detection

- A warm entity entering the sensing zone causes a positive differential change
- The warm entity leaving the sensing zone generates a negative differential change

PIR Sensor Code Example

- 1. import RPi.GPIO as GPIO
- 2. import time
- 3. GPIO.setmode(GPIO.BCM)
- 4. pir= 7
- 5. GPIO.setup(pir, GPIO.IN)

10. while True:

- 11. # read status of pin pir
- 12. if GPIO.input(pir): #
- 13. print "Motion Detected!"
- 14. time.sleep(1)
- 15. except KeyboardInterrupt:
- 16. print "Quit"

- 6. try:
- 7. print "PIR Module Test (CTRL+C to exit)"
- 8. time.sleep(10)
- 9. print "Ready"

17. GPIO.cleanup()

Circuits

Equivalent Resistances in Series Circuits

Equivalent Resistances in Parallel Circuits

References

- [1] CTAYLOR, Voltage, Current, Resistance, and Ohm's Law, 2016
- [2] Smon Monk, LEARN RASPBERRY PI 13 GUIDES, 2015
- [3] Mtaylor, Raspberry gPlo, 2016
- [4] How PIRs work, 2015
- [5] PETE-O, Series and Parallel Circuits, 2016
- [6] RPi.GPIO basics 6 Using inputs and outputs together with RPi.GPIO pull-ups and pull-downs, Jul 172013
- [7] Python, 2017